

## Part II Algebraic Topology – Example Sheet 2

Michaelmas 2025

Ailsa Keating

Questions marked \* are optional and should only be attempted after non-starred questions.

- Recall that for based spaces  $(X, x_0), (Y, y_0)$ , the wedge product  $X \vee Y$  is the quotient of the space  $X \sqcup Y$  by the relation generated by  $x_0 \sim y_0$ . What is the universal cover of  $S^1 \vee S^2$ ? Draw a picture.
- Let  $X$  be a Hausdorff space, and  $G$  a group acting on  $X$  by homeomorphisms, *freely* (i.e. if  $g \in G$  satisfies  $g \cdot x = x$  for some  $x \in X$ , then  $g = e$ ) and *properly discontinuously* (i.e. each  $x \in X$  has an open neighbourhood  $U \ni x$  such that  $\{g \in G \mid g(U) \cap U \neq \emptyset\}$  is finite).
  - Show that the quotient map  $X \rightarrow X/G$  is a covering map.
  - Deduce that if  $X$  is simply-connected and locally path-connected then for any point  $[x] \in X/G$  we have an isomorphism of groups  $\pi_1(X/G, [x]) \cong G$ .
  - Hence show that for  $n \geq 2$  odd and any  $m \geq 2$  there is a space  $X$  with fundamental group  $\mathbb{Z}/m$  and universal cover  $S^n$ . [Hint: Consider  $S^n$  as the unit sphere in  $\mathbb{C}^k$ .]
- (i) Show that the groups  $G = \langle a, b \mid a \rangle$  and  $H = \langle t \mid \rangle$  are isomorphic.  
 (ii) Show that the groups  $G = \langle a, b \mid ab^{-3}, ba^{-2} \rangle$  and  $H = \langle t \mid t^5 \rangle$  are isomorphic.  
 (iii) Show that the groups

$$G = \langle a, b \mid a^3b^{-2} \rangle \quad \text{and} \quad H = \langle x, y \mid xyxy^{-1}x^{-1}y^{-1} \rangle$$

are isomorphic. Show that this group is non-abelian and infinite. [Hint: Construct surjective homomorphisms to appropriate groups.]

- Use Seifert-van Kampen to show that the fundamental group of  $S^1 \vee S^1$  is a free group on two generators. Deduce that the inclusion  $i : S^1 \vee S^1 = (S^1 \times \{*\}) \cup (\{*\} \times S^1) \hookrightarrow S^1 \times S^1$  does not admit a retraction.
- A covering space is called *normal* if its corresponds to a normal subgroup. Draw pictures of all the connected degree 2 covering spaces of  $S^1 \vee S^1$ . Show that they are all normal coverings. Now do the same thing for the connected degree 3 covering spaces of  $S^1 \vee S^1$ . Which of them are normal coverings?
- Consider  $X = S^1 \vee S^1$  with basepoint  $x_0$  the wedge point, which has  $\pi_1(X, x_0) = \langle a, b \rangle$  where  $a$  and  $b$  are given by the two characteristic loops. Describe covering spaces associated to
  - $\langle \langle a \rangle \rangle$ , the normal subgroup generated by  $a$ ,
  - $\langle a \rangle$ , the subgroup generated by  $a$ ,
  - the kernel of the homomorphism  $\phi : \langle a, b \rangle \rightarrow \mathbb{Z}/4$  given by  $\phi(a) = [1]$  and  $\phi(b) = [3] = [-1]$ .

What are the fundamental groups of these covering spaces?

- Show that the free group  $F_2$  contains subgroups isomorphic to the free group  $F_n$  for any  $n > 1$ .
- Let  $Y = \mathbb{RP}^2 \vee \mathbb{RP}^2$  and  $*$  be the wedge point.

- Show that

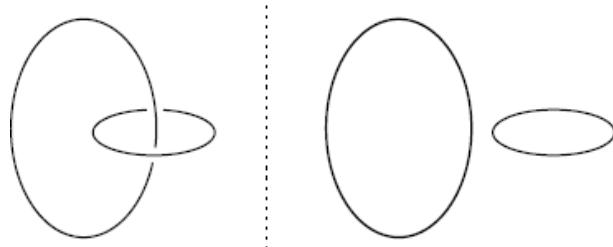
$$\pi_1(Y, *) \cong \mathbb{Z}/2 * \mathbb{Z}/2 \cong \langle a, b \mid a^2, b^2 \rangle.$$

- Describe the covering space of  $Y$  corresponding to the kernel of the homomorphism  $\phi : \langle a, b \mid a^2, b^2 \rangle \rightarrow \mathbb{Z}/2$  given by  $\phi(a) = 1$  and  $\phi(b) = 0$ . Hence show that  $\text{Ker}(\phi)$  is isomorphic to  $\langle a, b \mid a^2, b^2 \rangle$ .

(iii) Draw a picture of the universal cover  $\tilde{Y}$ . Deduce that  $ab$  has infinite order in  $\langle a, b \mid a^2, b^2 \rangle$ .

9. Show that the Klein bottle has a cell structure with a single 0-cell, two 1-cells, and a single 2-cell. Deduce that its fundamental group has a presentation  $\langle a, b \mid baba^{-1} \rangle$ , and show this is isomorphic to the group  $G$  in Q13 of Example Sheet 1.

10. Consider the following configurations of pairs of circles in  $S^3$  (we have drawn them in  $\mathbb{R}^3$ ; add a point at infinity). By computing the fundamental groups of the complements of the circles, show there is no homeomorphism of  $S^3$  taking one configuration to the other.



11\* A *graph*  $G$  is a space obtained by starting with a set  $E(G)$  of copies of the interval  $I$  and an equivalence relation  $\sim$  on  $E(G) \times \{0, 1\}$ , and forming the quotient space of  $E(G) \times I$  by the minimal equivalence relation containing  $\sim$ . (That is, it is a space obtained from a set of copies of  $I$  by gluing their ends together.) The *vertices* are the equivalence classes represented by the ends of the intervals.

- (i) A *tree* is a simply-connected graph. A *star* is a tree with a vertex  $x_0$  such that one end of each edge is attached to  $x_0$ . A *leaf* of a tree is a vertex attached to only one edge. Prove that every tree is homotopy equivalent to a star, relative to its leaves.
- (ii) If  $T \subset G$  is a tree, show that the quotient map  $G \rightarrow G/T$  is a homotopy equivalence, and that  $G/T$  is again a graph. Hence show that every connected graph is homotopy equivalent to a graph with a single vertex. [You should assume that every graph has a maximal tree.]
- (iii) Show that the fundamental group of a graph with one vertex, based at the vertex, is a free group with one generator for each edge of the graph. Hence show that any free group occurs as the fundamental group of some graph. (We have *not* required that a graph have finitely many edges.)
- (iv) Show that a covering space of a graph is again a graph, and deduce that a subgroup of a free group is again a free group.

Comments or corrections to [amk50@cam.ac.uk](mailto:amk50@cam.ac.uk).